
A Procedural Model for Interactive Animation of
Breaking Ocean Waves

Stefan Jeschke
University of Rostock, CS Dept.,
Institute for Computer Graphics,

Albert-Einstein-Str. 21,
18051, Rostock, Germany

Stefan.Jeschke@informatik.
uni-rostock.de

Hermann Birkholz
University of Rostock, CS Dept.,
Institute for Computer Graphics,

Albert-Einstein-Str. 21,
18051, Rostock, Germany

HB01@informatik.uni-
rostock.de

Heidrun Schmann
University of Rostock, CS Dept.,
Institute for Computer Graphics,

Albert-Einstein-Str. 21,
18051, Rostock, Germany

Schumann@informatik.uni-
rostock.de

ABSTRACT

This paper presents a procedural model for breaking ocean waves that is intended to be used for interactive
visualization. The movement as well as the appearance of the waves is modelled by a set of functions in
dependence of time and space. This continuous surface description allowes it to calculate all properties of every
point (including foam) on the ocean surface at every time without any information from previous time steps. By
using an adaptive sampling sheme for rendering, the frame rate of the animation only depends on the screen
resolution rather than on the model size. The model is quite simple, easy to implement, fast to compute and
provides a visual appealing interactive animation of infinite large ocean coast scenes. On the other hand it
provides only limited flexibility due to its procedural character. For achieving more realistic scene appearance, it
may also easily be combined with models for deep-water waves presented in the past.

Keywords
interactive, rendering, procedural modelling, ocean modelling, animation, water waves

1. INTRODUCTION
The modelling and visualization of ocean scenes has
been a challenge in computer graphics for a long
time. This paper focusses on the special case of
interactive (this means at least 5 frames per second)
visualization of plunged breaking waves in infinite
large ocean coast scenes. The goal is a simple to
implement and fast to compute model for producing
high output frame rates and reasonable image quality.
Figure 1 shows an output image generated by using
this model (in combination with wave ripples
modelled with sinusoids).

The basic principle implemented here for achieving
these goals is a procedural model. This means, every
point in the ocean scene is described by some simple
formulas in dependence of time and space. The ocean
animation is then restricted to a continuously

Figure 1: Output image generated with the
presented method and wave ripples (sinusoids).

changing parametrization for the formulas.

The advantages of a procedural approach are a
continuous surface description in time and space so
that the location and appearance of every point in the
scene can always be calculated without using
information from previous time steps. Note
especially, that even foam generated by the breaking
waves will also be computed without recomputation
of values obtained in previous time steps (in contrast
to particle systems). Furthermore, the model can
easily be used in combination with wave models for
deep-water waves and fine rippling waves to enhance
the realism.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

WSCG POSTERS Proceedings
WSCG’2003, February 3-7, 2003, Plzen, Czech Republic.
Copyright UNION Agency – Science Press

On the other hand, a procedural model has the
limitation that the oceans appearance and behaviour
is completely defined by the author (such as wave
refraction on the cost). This implies a
reparametrization of the model for changing
environment conditions (for instance a different
coastline). Because a reparametrization done always
by hand is not desireable, future work should focus
on this to provide a more flexible use of the model.

For displaying the ocean surface, a polygon mesh is
generated by using the image space sensitive
sampling method presented by Hinsinger [Hin02]. By
using this rendering method, the output frame rate
only depends on the screen area covered by the ocean
field (i.e. the number of sampling points). Efficient
use of current graphics hardware is provided due to
the use of polygon strips.

Since the model is easy to implement and provides
fast output image computation, its main applications
are virtual environments and computer games (also
because simple collision detection is possible) as well
as multimedia applications (think about a fly over an
infinite large ocean surf scene).

2. RELATED WORK
Early approaches in the field of ocean modelling and
visualizing by Max [Max81], Fournier [Fou86],
Peachey [Pea86] and Tso [Tso87] were able to
produce fairly realistic results for relatively quiet
ocean surfaces (also called "deep-water waves") but
plunged breaking waves could not be modelled
correctly due to the sinusoidal assumption in the
parametric surface and/or the use of a high field wave
representation. A good introduction and overview of
that work is given in the SIGGRAPH 2001 course
notes [Tes01].

More recent work by Jensen [Jen01] uses different
wave modelling approaches for different levels of
detail for interactive deep-water animation. There
was also presented a texture-based method for
rendering foam (that is also used in this paper) and
show clever use of current graphics hardware to
achive more realism.

Extensive use of programmable graphics hardware
was also done by Schneider [Sch01]. Here it was
used for displacement, transformation and lighting
calculations of a height field water surface for
realizing effects such as refraction, reflection and the
Fresnel term.

Smith [Smi02] used in his diploma thesis surface
markers to track a wave surface for interactive
animating curling and breaking (including plunged)
waves arriving at a coast.

The most closely related work to this paper was made
by Hinsinger [Hin02]. Here, procedural waves are

used to model an infinite large deep-water surface.
The surface is rendered by using an adaptive
sampling method that completely decouples the
output frame rate from the size of the ocean scene.
This paper can be seen as an extension of that work
for handling breaking waves and the resulting foam.

3. A PROCEDURAL WAVE FIELD
For further descriptions the basic coordinate setup
illustrated in figure 2 is used (z is pointing up). The
intial assumption for the procedural model is that all
waves are straightly running towards the beach.
For realistic wave behaviour, the phenomenon of
wave refraction is modelled. This includes a slowing
down of the wave when arriving the beach as well as
a beach alignment.

Figure 2: Setup for the procedural wave field

At first, a parameter s running from 0 to 1 over the
wave’s life time is defined by using the time of birth
(tstart) and dead (tend) of the wave and the current time
(tcurrent):

r

startend

startcurrent

tt

tt
s

−
−=

Here r defines the amount of deceleration and
alignment to the coastline over time. The desired y
position (ycurrent) for the current time (tcurrent) is then
obtained by using:

ycurrent = (1-s)ystart (x) + s yend(x)
ystart is here a constant function so that the waves start
as straight lines, whereas other functions are of couse
also possible. yend defines the coastline. It can be
defined by using a function in dependence of x (for
instance a superimposition of sinus functions) or by
using cubic interpolation of sampling points. Slightly
varying values for r and/or yend let every wave run a
bit on its own which gives a more natural look.
The second phenomenon modelled here is the wave
breaking. Normally, a wave begins to break at
several points and then successively breaks over its
whole width. This is modelled here by using a simple
function tbreak(x) that defines the time the wave
breakes for every point in x direction (for instance
also a superimposition of sinus functions). Again,
using slighly varying values for the function
parameters lets every wave look unique.

3.1 Modelling Foam
The foam modelled here is produced by breaking
waves when the water from the top crashes into the

water at the bottom. Afterwards, foam slowly
disappears when the milliards of small bubbles
disappear.

Because the breaking time for every wave is always
known from its function tbreak(x), it is possible to
compute the amount of foam for every point at the
ocean surface at every time. For estimating the foam
amount at a given point (x,y) at the current time
tcurrent, all waves recently passed y are considered. For
every wave, the exact time twave when it passed y is
estimated by reorganizing the two functions above to
tcurrent:

twave = tstart + (tend-tstart)
r y-ystart

yend-ystart

If the wave produced foam at that moment (this can
simply be tested by using the function for breaking)
the foam amount is faded over time by using a
function that uses as input the time difference
between twave and tcurrent (for the simplest case, this is
a linear function). Finally, the highest foam value
from all considered waves is taken as the actual foam
value for that point.

4. PROCEDURAL WAVE SHAPES
For procedural modelling the following basic "life
cycle" of a breaking wave is considered (refer to
figure 3). When a wave is born, it comes up from
ocean level and has a round shape (a). When it
breaks, the front part dents inside and the top part
falls down thus forming a tube (b). Afterwards, the
wave collapses until it is completely flat again (c).

(a) (b) (c)
Figure 3: Phases of the life cycle of a breaking

wave.

The basic idea for procedural modelling the wave
shapes is to use a combination of four functions:
cosines function, exponential function, rotation and
scaling. Figure 4 illustrates this basic principle.

(a) (b) (c)
Figure 4: Example for a procedural wave shape.

(a): combination of cosine, exponential and scaling
function; (b): rotation; (c): scaling.

For wave animation, the function parametrization is
blended over time. The formulas and parametrization
presented here are obtained by experiment using only
visual control, whereas physically-based wave shape
modelling would of course also be possible here. The
functions map an input space parameter s (0≤s<1,

running from the back to the front part of the wave)
onto the respective (y,z) position at the ocean surface
in dependence of the current time.

Because the front and the back part of the wave have
a different behavior, s is splitted for the front and
back part (the wave lip is always defined by s=0.5).
For every part the functions are parameterized
separately. Therefore s1 and s2 are used where s1 runs
from 0 to 0.5 (or respectively 0.5 to 1) and s2 always
runs from 0 to 1. For the first case the two values are:

s1 =
(2s)k1

2 ; s2 = (2s)k1

For the second case (s is between 0.5 and 1) the
values are:

s1 =
1+(2s-1)k1

2 ; s2 = 1-(2s-1)k1

The constant k1 is introduced for a possibly uniform
parametrization of the wave, which is desireable for
the rendering process. The values for k1 can be
extracted from tabular 1 for the different wave
phases. With the values s1 and s2, the following
calculation is used to obtain the coordinates (y,z) for
the wave shape:

z1 =
k2(1+cos((s2-1)π))

2 +k3s2
k4

φ =
πk5s2

k6

2

y = (1
2-s1) cos(φ)-z1sin(φ)+

1
2

z = [(1
2-s1)sin(φ)+z1cos(φ)]k7

For a smooth animation the constants ki are linearly
blended over the three different phases of the life
cycle in dependence of a time parameter t that runs
from 0 to 1 during every phase. Table 1 shows all
constants ki for the front and back sides for every
phase.

 round breaking collapsing
 front back front back front back

k1 1 1 2
7
10 2

1
2

k2 1
4

1
4

1-t0.85

4
1
4 0

1
4

k3 0 0
t0.85

4 0
1-t
4

t0.7

2

k4 0 0 4 0 4 40
k5 0 0 2

3

t 2

3

t
1 1

k6 0 0 16 4 16 4
k7 4t

5
4t
5

4+t
5

4+t
5 1-t 1-t

Table 1:Constants for procedural wave shape
description

5. RENDERING ISSUES
The use of todays graphics hardware is an obvious
choice for achieving interactive frame rates. For
doing so the ocean scene is sampled and triangulated
as was presented by Hinsinger [Hin02]: sampling
points are uniformly distributed on the screen (i.e.
every n-th pixel is a sampling point) and a ray from
the center of projection is shot through every
sampling point on the image plane. The intersection
point from the ray with the ocean level plane is
computed and for the resulting point the ocean
surface position is estimated. By using this technique,
perfect uniform sampling is obviously not guaranteed
and aliasing also happens but both effects are
normally not visible due to the moving nature of the
scene. The resulting polygon mesh is a full polygonal
description of the ocean surface, including closed
wave tubes. It is stripped to further accelerate the
rendering process.
As was presented by Hinsinger [Hin02], the normal
vectors per vertex needed for polygon shading can be
computed analytically by spatial derives of the
formulas describing the wave. Because this is quite
complex for breaking waves, the normal vectors are
calculated here by accumulating the normals from all
adjacent faces (obtained by vectorproduct) and
normalizing the result.
Finally, the actual foam density value is calculated
per vertex as was described in section 3.1. Foam is
visualized as a tiled transparent texture applied to the
polygons forming the ocean surface as was also
presented by Jensen [Jen01]. The texture opacity is
set for every vertex with respect to its current foam
amount value. The use of an animated texture for
foam may further enhance realism.

6. CONCLUSIONS
The callenge of this work is a procedural method for
breaking wave modelling to be used for simple
interactive ocean animating. The appearance of the
ocean scene can be computed everytime without the
need for transfering information over time.
Furthermore, in combination with a rendering
method that uses adaptive sampling, the output frame
rates are decoupled from the size of the ocean scene.
The proposed method was implemented by using
C++ and OpenGL on a Pentium4 running at 1800
MHz and NVIDIA Geforce III graphics hardware. 10
breaking waves were animated. A screen resolution
of 1024x768 pixels and a sampling point distance of
4 pixels (being a good tradeoff between high output
frame rates and good image quality) results to
approximately 50000 sampling points and a frame
rate of 35 frames per second.

On the other hand, in a procedural model everything
has to be modelled by hand so that much work has to
be done to obtain a more realistic model. This

includes the support of different wave forms (for
instance spilled breaking waves) and allowing
different wave sizes and a more complex wave
behaviour. Furthermore, assuming a given ocean
coast scene, a mapping operation that automatically
adapts the parametrization for the breaking waves
(for instance for wave refraction) would be highly
desirable.

Many more components have to be included to
enhance the realism. The presented model can easily
be combined with models for deep-water waves
(including sinusoids as in figure 1, trochoids or FFT-
based approaches ([Tes01])) and small wave ripples
modelled as animated bump maps ([Jen01]). Aside
from the waves, environment reflection maps can be
used to model sky reflections on the ocean surface by
using graphics hardware ([Sch01]). Finally, spray
produced by the breaking waves should be modelled.
Because a particle simulation would be to costly for
large scenes, time dependend functions that define
the particle movements should be used for that.

7. REFERENCES
[Fou86] Fournier, A., and Reeves, W.T. A Simple

Model of Ocean Waves. In ACM SIGGRAPH
Proceedings, Vol.20, No.4, pp.75-84, 1986.

[Hin02] Hinsinger, D., Neyret, F., and Cani, M.P.
Interactive Animation of Ocean Waves. In
Symposium on Computer Animation, 2002.

[Jen01] Jensen, L. S., and Golias, R. Deep-Water
Animation and Rendering. In Gamasutra
September 2001.

[Max81] Max, N. L. Vectorized Procedural Models
for natural terrain: Waves and Islands in the
Sunset. In Computer Graphics, Vol.15, pp.317-
324, 1981.

[Pea86] Peachey, D.R. Modelling Waves and Surf. In
ACM SIGGRAPH Proceedings, Vol.20, No.4,
pp.65-74, 1986.

[Sch01] Schneider, J., and Westermann, R. Towards
Real-Time Visual Simulation of Water Surfaces.
In Proceedings of the Vision Modelling and
Visualization Conference 2001, pp.211-218,
2001.

[Smi02] Smith, B.W. Realistic Simulation of Curling
and Breaking waves. Masters Thesis,
www.csee.umbc.edu/~bsmith15/799/thesis.pdf,
2002.

 [Tes01] Tessendorf, J. SIGGRAPH 2001 Course
Notes, Course 47: Simulating Nature: Realistic
and Interactive Techniques, ACM SIGGRAPH,
2001.

[Tso87] Tso, P. Y., and Barsky, B.A. Modelling and
Rendering Waves: Wave-Tracing Using Beta-
Splines and Reflective and Refractive Texture
Mapping, In ACM Transactions on Graphics,
Vol.6, No.3, 1987, pp.191-214, 1987

